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New Convergence Estimates for Multigrid Algorithms 

By James H. Bramble and Joseph E. Pasciak* 

Abstract. In this paper, new convergence estimates are proved for both symmetric 
and nonsymmetric multigrid algorithms applied to symmetric positive definite prob- 
lems. Our theory relates the convergence of multigrid algorithms to a "regularity and 
approximation" parameter a e (0,1] and the number of relaxations m. We show that 
for the symmetric and nonsymmetric V cycles, the multigrid iteration converges for any 
positive m at a rate which deteriorates no worse than 1 -cj-(1-`)/`, where j is the 
number of grid levels. We then define a generalized V cycle algorithm which involves 
exponentially increasing (for example, doubling) the number of smoothings on succes- 
sively coarser grids. We show that the resulting symmetric and nonsymmetric multigrid 
iterations converge for any a with rates that are independent of the mesh size. The the- 
ory is presented in an abstract setting which can be applied to finite element multigrid 
and finite difference multigrid methods. 

1. Introduction. In recent years, multigrid methods have been used exten- 
sively as tools for obtaining approximations to solutions of partial differential equa- 
tions (see the references in [5], [9]). In conjunction, there has been intensive research 
into the theoretical understanding of the convergence properties of these methods 
(cf. [2], [3], [4], [9], [11], [12]-[16], [18]). This paper will present a number of new 
results on the convergence of multigrid algorithms. 

We shall be concerned with the analysis of many-level multigrid schemes. The 
first approach to this problem involved Fourier analysis and only applied to rather 
limited situations, i.e., rectangular domains [8]. More general results can be ob- 
tained by variational or finite element like formulations of multigrid. One approach 
is to obtain results for two-grid schemes and use those results to derive estimates 
for the many-level schemes [3], [9]. The problem with this technique is that it only 
leads to results for W cycles with sufficiently large m (the number of smoothing 
iterations). Another interesting approach was taken in [4] in which a direct analysis 
was made for the many-level scheme. This technique leads to results for the V cycle 
with any m but under the assumption of 'full elliptic regularity', i.e., a = 1. Results 
for the W cycle algorithm for any m and a were given in [13], [14]. The theory 
presented in this paper also provides a direct analysis of many-level schemes. 
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We shall provide an analysis for symmetric and nonsymmetric multigrid cycling 
algorithms applied to symmetric positive definite problems. We relate our con- 
vergence estimates to a certain discrete regularity and approximation assumption 
which involves the parameter a E (0,1]. We will show that both the symmetric 
and nonsymmetric V cycle algorithms converge for any m and any af at a rate 

(1.1) ma + M (j +j)(1-a)/ 
per iteration. Here M, and jo are constants which are independent of j, the 
number of grid levels. In finite element and finite difference applications, j is 
proportional to log(1/h) where h is essentially the size of the finest grid. In such 
applications, our theorems guarantee that the convergence rate can only deteriorate 
like 1- clog(1-e)/a(11h) as h -* 0. The estimates improve as m becomes large. 

We next consider the symmetric and nonsymmetric W' cycle algorithms. Al- 
though the uniform convergence (independent of the number of levels) of this algo- 
rithm for Oa = 1 and any m was shown in [13], [14], we derive convergence estimates 
in the context of our framework. We prove a convergence bound of the form 

(1.2) 6 < (1 + m/Ma)-. 

Again, we have convergence for any m and any al, but for the W' cycle the rate is 
also bounded independently of the number of levels j. 

Finally, we introduce a generalized V cycle algorithm and derive the correspond- 
ing convergence estimates. In this algorithm, the number of smoothings varies on 
different grid levels. One example doubles the number of smoothings on each con- 
secutive coarser grid level. Note that this doubling strategy gives rise to the same 
number of smoothings as the W cycle but is simpler to code. We show that the 
generalized V cycle also converges for any Oa with rates that are independent of j 
(see Theorems 5 and 6). 

In our algorithms and analysis, the smoothing process is defined in terms of a 
general smoothing operator. Consequently, our analysis is applicable to many of 
the smoothing processes used in actual multigrid applications. We should however 
note that according to our analysis, little appears to be gained by using smoothing 
operators which are more complex than a weighted identity, although in practice 
some improvement may result. 

The outline of the remainder of the paper is as follows. In Section 2 we define 
the multigrid algorithms. These algorithms are described by a simple induction 
process and lead to linear operators which 'approximate' the inverse of the problem 
to which they are applied. In Section 3 we give the multigrid convergence analysis. 
In Section 4 we show how the theorems of Section 3 can be used to guarantee rapid 
convergence of preconditioned iterative schemes using the multigrid operator as 
a preconditioner. Finite element and finite difference applications are considered 
in Section 5. In addition, we show that for finite differences, symmetric Gauss- 
Seidel iteration leads to a smoothing operator which satisfies all of the hypotheses 
of the theorem. Finally, in Section 6, we give the results of numerically computed 
convergence factors for multigrid algorithms. We also give numerical evidence which 
suggests that the 'regularity and approximation' assumption does not in general 
hold for all al. Hence, the new convergence estimates presented in this paper for 
Oa < 1 are of theoretical importance. 

2. The Multigrid Algorithms. In this section we describe both the sym- 
metric and nonsymmetric multigrid cycling algorithms. Along the way, we derive 
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basic recursion relations which play major roles in the analysis of the methods. For 
convenience, the algorithms are developed in an abstract Hilbert space setting. The 
results most naturally apply to finite element multigrid algorithms but can also be 
applied to certain formulations of finite difference multigrid algorithms. 

Let us assume that we are given a nested sequence of finite-dimensional vector 
spaces 

MoC Mlvlc... C Mj. 

In addition, let A(., ) and (-, .?k be symmetric positive definite bilinear forms on 
-Mk for k = o,... ,j. We shall develop multigrid algorithms for the solution of the 
problem: Given fe Mj, find v E Mj satisfying 

(2.1) A(v, 0) = (f, b)j for all X E( Mj. 

To define the multigrid algorithms, we shall define auxiliary operators. For 
k = o,... ,j, define the operator Ak: -Mk + -Mk by 

(Akw,qO)k= A(w, 0) for all 0 E Mk. 

The operator Ak is clearly symmetric (in both the A(., ) and (, )k-inner products) 
and positive definite. Also define the projectors Pk: Mk+l - Mk and Pko:Mk+ 
AMk by 

A(Pkw,q)= A(w, q) for all q$ e k, 
and 

(Pkwq$)k 0(w,)k+1 for all 0 E -Mk- 

Note that Pk is symmetric in the A-inner product. 
To define the smoothing process, we require a linear operator Rk: Mk l, Mk for 

k = 1,...,j. We assume that Rk is symmetric in the (., .)k-inner product and set 
Kk = (I - RkAk). We further assume that Kk is nonnegative in the sense that 
A(KkU,U) ?0 for all u e -Mk. 

We first define the symmetric multigrid operator B': -Mk - Mk by induction. 

Algorithm S. 
Set Bo = A-'. Assume that B'_1 has been defined and define B'g for g e Mk 

as follows: 
(1) Set x? = 0 and q? = 0. 
(2) Define x1 for I = 1, .. ., m(k) by 

(2.2) xi = X1 1 + Rk(g - AkX' 1). 

(3) Define Xm(k)?+1 - m(k) + qP where q% for i = 1, . ,p is defined by 

qz= q 1'+ B- [Do (k))-Ak-lqil] 

(4) Set Bkg = x2m(k)+1 where x1 is defined for I = m(k) + 2,. ., 2m(k) + 1 by 
(2.2). 

In this algorithm, m(k) is a positive integer which may vary from level to level 
and determines the number of smoothing iterations on that level. Because of this 
variable smoothing, the above algorithm is more general than that usually described 
[2], [3], [5], [9]. If all of the m(k) are the same, then this algorithm is the usual 
symmetric multigrid algorithm described in a notation which is convenient for our 
analysis. Note that Bs is clearly a linear operator for each k. In this algorithm, p 
is a positive integer. We shall study the cases p = 1 and p = 2 which correspond 
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respectively to the symmetric V and W' cycles of multigrid. Generalizations to 
p > 2 are straightforward and will not be considered. 

The definition of the nonsymmetric multigrid operator Bn is similar except that 
the smoothings of Step 4 are excluded. More precisely, we define Bk: Mk | Mk 
by induction. 

Algorithm N. 
Set BJ = A-'. Assume that B'1 has been defined and define B'g for g E Mk 

as follows: 
(1) Set x0 = 0 and q0 =0. 

(2) Define xl for I = 1,... , m(k) by (2.2). 

(3) Define Bkg = Xm(k) + qP where qZ for i = 1, . . . ,p is defined by 

(2.3) q= q i1 + B n1 [Po 1(g - AkX (k)) -Ak-lqil] 

The above algorithm defines a linear operator B n which is equivalent to the stan- 
dard nonsymmetric multigrid algorithms described in [3], [9] when m(k) is constant. 

Remark 2.1. One computationally effective algorithm with variable m is the V 
cycle algorithm (p = 1) with m(k) = mo2i-k. Note that, for this algorithm, the 
total number of smoothing iterations on each level is the same as that for the W' 

cycle (p = 2) with m(k) = mo for all k. We shall prove in Section 3 (see Theorems 
5 and 6) that, like the corresponding W cycle, this V cycle converges for any mo 
and Oa with rates that are independent of j. In addition, this generalized V cycle is 
easier to implement. 

Let g = Akx. It is straightforward to check that qP defined by (2.3) satisfies 

(2.4) qP = (I - (I - B n Ak-1)P)A-1PkLAk(X - Xm(k)). 

A trivial computation gives that 

(2.5) x -xm(k) = Km(k)X k 

Noting that Pk/1Ak = Ak-lPk-l and combining (2.4) and (2.5) gives 

(2.6) I - BnAk = [(I - Pk-,) + (I - BknAkl1)PPkl1]Kmi(k) 

Equation (2.6) gives a fundamental recurrence relation for the nonsymmetric multi- 
grid algorithms. The analogous recurrence in the symmetric case is 

(2.7) I- B -Ak =K (k) [(I - Pk,) + (I - B8_ Akl)PPk-l]Km(k) 

which follows from similar reasonings. 
Note that (2.7) implies that 

A((I - B9Ak)u, v) = A((I - Pk-)Km (k u, Km (k)v) 

+ A((I - BklAk )PPkmlKk )u, K(k()v). 

Remark 2.2. An obvious argument using (2.8) and induction gives that I - B'Ak 
is a symmetric operator in the A-inner product. Consequently, B' is symmetric in 

(,)k. 

Remark 2.3. A similar argument gives that 

(2.9) A((I-B'Ak)u, u) > 0 for all u E JMvk. 



NEW CONVERGENCE ESTIMATES FOR MULTIGRID ALGORITHMS 315 

We finally note that by the definition of Pk, 

A((I - B'Ak)u, (I - B'Ak)u) 

(2.10) = A((I - Pk-l)Kk ( u, Km (k)U) 

+ A((I - Bnl Ak)PPkl ( k) U, (I - B(l Ak)PPkUlKk)u). 

3. Multigrid Analysis. In this section we give an analysis of the multigrid 
algorithms described in the previous section. The goal of this section is to prove 
norm inequalities of the form 

(3.1) A((I - B'Ak)U, U) < 8kA(u, u) for all u E .Mk, 

and 

(3.2) A((I-B nAk)u, (I-B nAk)U) < 8kA(u, u) for all u e Mk- 

We shall relate 8k to two a priori assumptions. Let 0 < al < 1. The first 

assumption is a "regularity and approximation" assumption of the form 

(3.3) A((I - Pkl)u, u) <C2 (j AUk) A(u,u)1 a for all u e Mk, 

where Ak is the largest eigenvalue of Ak. More precisely, we assume that (3.3) 

holds with Co, independent of k for k = 1,. . .,j. As will be demonstrated in 

Section 5, in finite element applications, the derivation of inequalities of the form 

(3.3) uses regularity estimates for the elliptic operator being approximated and 

the approximation properties of the subspace. The second assumption is that the 

smoothing operator Rk satisfies the inequality 

(3.4) k < CR(RkU, U)k for all u E -Mk. 
Ak 

Again, we assume that (3.4) holds with a constant CR independent of k. By an 

obvious change of variable, we see that (3.4) is equivalent to 

(3.5) IIAkUIIk <CRA((I- Kk)U,u) for all u E Mk. 
ok 

Remark 3.1. Note that a simple choice of the smoothing operator is Rk = Ak-Ik 

where Ak is any upper bound for Ak (we need Kk nonnegative) and Ik is the identity 

on -Mk. Furthermore, if one takes Ak = Ak then (3.4) holds with CR = 1. 

We can now state and prove the theorem for estimating 8k in (3.1) for the 

symmetric V cycle. 

THEOREM 1. Assume that (3.3) and (3.4) hold and define Bj' by Algorithm S 

with p = 1 and m(k) = m for all k. Then (3.1) holds with 

(3.6) 3 = 1 -j, 

where 

(3.7) =j 
-- 

ma + M, (jo + j)(1-a)/ 

In (3.7), jo is any positive constant and MO, is defined by first defining 

(3.8) M = (1+ jo CRQ7YC2) 
Jo0 2 
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where 
a 1-oe 

for Oa > 1/2, 

(3.9) 
a 2 

| a) for a < 1/2, 

and then setting 

(3.10) ( 
+ 

Mo ) 

Proof. We shall prove that 

(3.11) A((I-WB Ai)u, u) < 8iA(u, u) for all u EM, 

by induction on i. For i = 0, there is nothing to prove. Assume that (3.11) holds 
for i = k - 1. By (2.8) and the induction hypothesis, 

A((I - B'Ak)u, U) < A((I - Pk-l)Kjmu, Km'u) 
(3.12)kk 

k 

+ &k-1A(Pk-1Kk u, Kmu) 
(3.13) = (1 - 6k1)A((I - Pkl)Kmu, Km u) + 6k lA(Kk u, K u). 

By (3.3) and a generalized arithmetic-geometric mean inequality, 

A((I - Pkl1)Kkmu, Kkmu) 

(3.14) ~ < I2 IA-Y Kk IIk + (1 - a)/(1')A(KKmu, Kmu)} 

holds for any positive -k. By (3.5) and the symmetry of Kk, 

(3.15) IIAkK uIIk < CRA((I - Kk)Kk2mU, u). 
Ak 

Since the spectrum of Kk is contained in the interval [0,1], 

1 2m-1 

A((I-Kk)K 2mU, U) < 2 S A((I-Kk)Kku, u) 
(3.16) i=O 

1 A((I-K2m)u,u). 
2mk 

Combining (3.13)-(3.16) gives 

A((I - B'Ak)U, U) < [(1 -6 k-1)C(l - )k /(1&) + fk-l]A(Kk2mu, u) 

(3.17) + (1- k1)C2 CR2 kA((I - Kkm)u,u). 2m 

To prove that (3.11) holds for k, it suffices to choose -Yk so that 

(3.18) (1 - 6k-1)Ca(1 - a) + 6k-1 < 3k 

and 

(3.19) (1 - &k-1)CoCR2 CR t--k <3 6k 2m- 

We set -1k by 

(3.20) (1 - k-l)CaCR -2 Yk = 5k-1. 2m 
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Note that by definition, 6k is an increasing function of k and hence (3.20) imme- 
diately implies (3.19). We need only verify that (3.18) holds for this choice of yk. 
This is equivalent to showing 

(3.21) (1 - &k1)C (1 - )&/(&) ?< -k-1. 

Let D(k) = m& + Ms(jo + k)(l-&)/&. A direct computation gives that 

(3.22) k- 6k-1 = Mama[(jo + k)(l&)/a - (jo + k -1)(1-)/a] 

9(k)9(k -l) 

The left-hand side of (3.21) can be written 

(3.23) (02\1/(l-a) (1-a) (CRa a/(l a) (3.23)(Ca2 ) (jo + k- 1)P(k -1) 2 Ma 

A straightforward exercise in calculus, noting that k > 1, gives 

(jo + k - 1)[(jo + k)(1-a)/a - (jo + k -1)(1-a)/a 

(3.24) > 1-aN t Jo_) 

where 
(1 if a > 1/2, 

l=jld 1 a if a <1/2. 

Combining (3.22)-(3.24) shows that (3.21) holds if 

(aCa2 )1/(l-a)< 2R 
a a) 

(3.25) 
< M/(l-) (_Jo_ maMa(jo + k)(l-a)/a 

We note that Ms. was chosen so that 

(CC2)1/(l-) (CR )&(1&) -( 0 ) 

The definition of M. implies 

(C2) 1/a (CR) </la ( o 10)M/1 Ma 
ma/(1-a) a___ 

Inequality (3.25) then follows from 

Ms m<aMa (jo + k)(1-)/a 

1+Ma - DP(k) 

This completes the proof of Theorem 1. 
Remark 3.2. As is clear from the proof of the theorem, any positive jo leads to 

a bound for 33 with ej given by (3.7). The best choice is evidently a value which 
minimizes 3j. 

Our second theorem applies to the nonsymmetric V cycle. 
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THEOREM 2. Assume that (3.3) and (3.4) hold and define B7 by Algorithm N 
with p = 1 and m(k) = m for all k. Then (3.2) holds with 

by = 1 -?j 

where Ej is defined as in Theorem 1 (see (3.7)-(3.10)). 

Proof We shall prove that 

(3.26) A((I - B Ai)u, (I - BWA)u) < 8iA(u, u) for all u E Mi, 

by induction on i. For i = 0, there is nothing to prove. Assume that (3.26) holds 
for i = k - 1. By (2.10) and the induction hypothesis, 

(3.27) A((I - BnAk)U, (I - B Ak)U) < A((I - Pkl)Kkmju, KKmju) 

+ 6k-lA(Pk-lKkmu, Kkmau). 

Notice that the terms on the right-hand sides of Eqs. (3.12) and (3.27) are identical. 
The arguments following (3.12) show that the right-hand side of (3.27) can be 
bounded by 6k. This completes the proof of Theorem 2. 

Remark 3.3. Theorems 1 and 2 give bounds for the convergence factor 3k in (3.1) 
and (3.2) in terms of a, m and j. In finite element applications, j (the number 
of levels) is proportional to a logarithm of the mesh size. Theorems 1 and 2 show 
that the multigrid V cycles still converge for any m but the convergence rate may 
deteriorate with a power of j depending upon the a for which (3.3) holds. A 
discussion of the relationship between a and domain/operator regularity is given 
in Section 5 (see Proposition 5.1). 

Remark 3.4. The theorems guarantee that the convergence factor 8j goes to zero 
faster than c/m& when j is held fixed and m tends to infinity. These rates are in 
agreement with the results of numerical computations presented in Section 6. 

Remark 3.5. The results given in Theorems 1 and 2 for a < 1 are new. The 
proof gives rise to a somewhat simpler analysis than that already in the literature 
[2], [4], [9] for a = 1. Indeed, by (3.17), if a = 1, it suffices to take 6k to be the 
solution 6 of 

(1 -6 )C2 CR = 6, 
2m 

i.e., 

(3.28) 8 + C2 CR 
2m + CaCR~ 

This value for 6 agrees with the results derived by the earlier analysis [2], [4]. Note 
also that the expression for 8j given by (3.6) tends to (3.28) as a -) 1. 

We next give results for the W cycle multigrid algorithms. As previously men- 
tioned, the uniform convergence of the W cycle algorithm independent of the num- 
ber of levels was shown in [13], [14]. Our results give convergence bounds which 
exhibit the explicit dependence on a and m. 

THEOREM 3. Assume that (3.3) and (3.4) hold and define Bj by Algorithm S 
with p = 2 and m(k) = m for all k. Then (3.1) holds with 8k = 6 (independent of 
k) given by 

(3.29) 6 = (1 + m/Ma)-a, 

where 

(3.30) Ma = 21/ (Ca2) 1/a aCR (-) a/. 
291 
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Proof. We proceed as in the proof of Theorem 1. However, since p = 2, (3.12) 
and (3.13) get replaced by 

A ((I - BkAk) U, U) < A((I - Pk)Kkm1u, K'u) 

(3.31) + 62A(Pk-lKku, Kk1u) 

(3.32) < (1 - 62)A((I - Pk-)K7u, Kku) + 62A(Kkju, Kjmu). 

The same reasoning which leads to (3.17) gives that 

A((I - BkAk)U, u) < [(1 - 62)C2 (1 _ - )-/(1-a) + 62]A(K2mU, u) 

(3.33) + (1 - 62)C2CRa A ((I - K2m)U, U) 
2mk 

holds for any positive A. We define -y by the equation 

(3.34) (1 - 62)C2CR Y =6. 2m 

It then suffices to show that for -y defined by (3.34), 

(1 - 62)C2 (1 - _)f-o/(l-a) + 62 < 8 

or 

(3.35) (1- 6)&/(1&) (c)1/(1) (1- a) (C2) ) < (+ ^)1 

A straightforward manipulation shows that (3.35) will be satisfied if 

(3.36) 2l/&MR - (C2)1/a aCR (1 _ a)( -a)/a< (< 6 1/a 

However, for y = 1/E, 

(3.37) ( 8) m (1-3)- yl+l/&y 
1i+&J Ma ) (Y - 1) (1 + Y)1/&, 

(3.38) > 1/ > 2-1/al 
- (+ Y)l1/ - 

where we used y1/' > y for y > 1. The theorem follows from (3.36) and (3.38). 

THEOREM 4. Assume that (3.3) and (3.4) hold and define B7 by Algorithm N 
with p = 2 and m(k) = m for all k. Then (3.2) holds with 8k = 6 given by (3.29). 

Proof. The proof of Theorem 4 is a slight modification of the proof of Theorem 
3. We use (2.10) to get 

(3.39) A((I - BkAk) U, (I - B'Ak) U) < A((I - Pkl)Kmu, Kkmu) 
+ 62A(Pk-lK Mu, Kkmu). 

Notice that the terms on the right-hand sides of Eqs. (3.31) and (3.39) are identical. 
The arguments following (3.31) show that the right-hand side of (3.39) can be 
bounded by 8. This completes the proof of Theorem 4. 

Remark 3.6. Theorems 3 and 4 show that the multigrid W cycles converge for 
any m and any a. The convergence estimates tend to zero as m gets larger and 
deteriorate as a tends to zero. 

We next consider a generalized symmetric V cycle. 
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THEOREM 5. Assume that (3.3) and (3.4) hold and define Bj1 by Algorithm S 
with p = 1. Assume that m(k) satisfies 

(3.40) /3om(k) < m(k - 1) < f13m(k). 

Here we assume that fo and i1 are constants which are greater than one and inde- 
pendent of k. Then (3.1) holds with 

(3.41) = 1 - Ej 

where 

(3.42) j m(j) ? Mc, 

In (3.42), Ma, is defined by 

Mc=( Ma 9 

where 
M~c = (CC2l/t-O)-)! (aCR131 (00a )-(,-ce)/a 

Proof. The proof of this theorem follows along the lines of the proof of Theorem 
1. In fact, following the arguments in the proof of Theorem 1 (see (3.21)), we see 
that it suffices to show that 

(3.43) (1- 6k-1)C(1 - 
a)^/(k 

c ) < 6k-6k-1 

holds with 6k defined by (3.41)-(3.42), where -k is defined by 

(3.44) (1- 6k-1)CaCR ('k1k = 6k-1. 
2m(k) 

Let D(k) = m(k)a + Mc,. A direct computation gives that 

(3.45) 6k -6k-1 _> Ma~m(k)0'(,i% - 1) 
D(k)D(k - 1) 

The left-hand side of (3.43) can be written 

(3.46) (Ca2)1/(1-c) (1-a) (aCRm(k-1)) /(1-a) 

Combining (3.45) and (3.46) shows that (3.43) holds if 

(aCd)./( 1 
ar) ')M (k) tMa (3.47) (C2) 1/ (1- ) (1 - a) CC?3 (/300 - 1) Maa') ~)~ 

2 D ~~~~~~~(k) 

However, the definitions of Mg, and M<, imply 

(C.)1/(1e)(1R-a)( 

- (dot -l1)Me/(l-a) < (ft - )Ma/(1'-) Mc, 

< (fit- 1)MQT/(1 -a) m(k) ,Ma 

This completes the proof of the theorem. 
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Remark 2.1 gives one example of a V cycle multigrid algorithm with variable 
m satisfying the hypothesis of the theorem (fi0 = f1 = 2). For a fixed f0 > 1, 
one can define a sequence of m(k)'s as follows. Let m(j) be an arbitrary positive 
integer and define, by induction, m(k) to be the least integer greater than or equal 
to 3om(k + 1). For example, taking f0 = 3/2, 31 = 2 and m(j) = 1 gives rise to 
the sequence m(j), m(j -1), ... = 1, 2,3,5,8,12,18, .... 

The following result gives the analogous theorem in the nonsymmetric case. 

THEOREM 6. Assume that (3.3) and (3.4) hold and define Bn by Algorithm 
N with p = 1 and m(k) satisfying (3.40). Then (3.2) holds with 3j given by 

(3.41)-(3.42). 

Proof. The theorem easily follows from (3.27) and the estimates derived in the 
proof of Theorem 5. 

4. Using Multigrid to Solve (2.1) and Related Systems. In this section 
we shall consider a number of iterative techniques which use multigrid to solve (2.1) 
and related systems. We shall see that Theorems 1-6 give rise to estimates on the 
rate of convergence for the resulting iterative schemes. These observations are not 
new, however are included to indicate some of the ways in which multigrid can be 
used to solve problems. 

We first consider the symmetric multigrid operators. Combining (2.9), (3.1) and 
an obvious change of variable gives that 

(4.1) (1 - 6) (A71 uu) < (Bju, u)j < (A'u, u)j for all u E MJj 

holds for 6 given by (3.6), (3.29) or (3.41). Inequalities of the form of (4.1) imply 
that Bj1 is a good preconditioner for Aj, and hence many preconditioned iterative 
techniques can be applied to solve (2.1) or similar problems corresponding to other 

comparable operators. Specifically, let Ai: Mj F-+ Mj be another symmetric (with 
respect to the (., .)j-inner product) operator which satisfies comparability estimates 
of the form 

(4.2) co(Aiu,u)i < (Aju,u)j < ci(Aiu,u)j for all u E Mj1. 

Then Bj can be used as a preconditioner for the solution of the problem: Given 
f E Mj, find v E Mj satisfying 

(4.3) Ajv = f. 

The most straightforward preconditioned iterative method is the linear method 
given by 

(4.4) vn+ 1 =vn + rBjs(f -Aj vn ) 

Let 

(A3.,.)1/2 
and set en = v - vn. Then iteration (4.4) is convergent for an appropriate choice 
of r. Furthermore, if Ai = Aj, then (4.4) is convergent for r < 2 and 

(4.5) II~~~~~~||en+ 111I < p|||en||| 

where p = max(jl -rI, 11 -r + rSI). Taking r = 1 gives a rate of 6 per step, while 
the optimal convergence is achieved by setting r = 2/(2 - 6). 
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It is not difficult to see that en = (I+Pr(B7Aj))e0 for an appropriate polynomial 
Pa. More generally, the iterative scheme defined by 

vn = V0-P(Bjs Aj) (v-vo) 

gives rise to the error equation 
n 

e = (1+ P(BjAj))e0 
An accelerated linear scheme is defined by making an appropriate choice of P. An 
optimal choice of the P can be made by use of Chebyshev polynomials (see, for 
example, [71). For such a choice, the error en = V- n can be bounded by 

(4.6) Ille nII < 2 (lii 1)f IleollI, 

where K (the condition number of BjAj) is bounded by ci/(co(1 - 6)). The co- 
efficients of the polynomial P depend upon a priori estimates for the largest and 
smallest eigenvalues of B;Aj. 

It is possible to set up nonlinear iterations which use Bj as a preconditioner for 
the solution of (4.3). One well-known candidate results from the conjugate gradient 
method. The solution v of (4.3) satisfies 

(4.7) B^Ajv = B9f. 

The operator BjAj is symmetric in the (Aj3, .)j-inner product (see Remark 2.2) 
and is positive definite by (4.1) and (4.2). The conjugate gradient method can be 
directly applied to (4.7) in this inner product to produce a sequence {fV} which 
converges to v. In fact, the error for this iteration is also bounded by (4.6). The con- 
jugate gradient scheme has the additional property that estimates for eigenvalues 
of BjAi need not be known a priori for its application. 

We next consider the use of nonsymmetric multigrid algorithms for the solution 
of (2.1). The linear iteration (4.4) with r = 1 converges and satisfies the inequality 

(4.8) Me en+1II < 61/2II|enhil 

where 6 satisfies (3.2). 
Remark 4.1. The estimates for 6j satisfying (3.1) given by Theorem 1 are identical 

to those for 6, satisfying (3.2) given by Theorem 2. Using the estimates of the 
theorems, we find that r = 1 in (4.5) should converge at a rate which is twice as 
fast as that of (4.8). Thus, the extra smoothings used in the symmetric algorithm 
lead to an iterative method which converges in half the number of iterations. A 
similar observation holds for the symmetric and nonsymmetric W and generalized 
V cycle algorithms. 

Remark 4.2. We have considered applying the multigrid algorithms to the so- 
lution of the 'algebraic' problem (2.1) or the related problem (4.3). In the case of 
finite element or finite difference applications, the so-called full multigrid process 
can be used to get an 'accurate' approximation to the solution of (2.1) with compu- 
tational work proportional to that required for a reduction on the finest grid level 
(cf. [3]). 

5. Estimate (3.3) and Applications. We give a proof of the regularity 
and approximation estimate (3.3) in this section in the case of a typical finite 
element application of multigrid. Although the proof is given in [3], we include 
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it for completeness. We next discuss application to finite differences. We finally 
consider an example where symmetric Gauss-Seidel iteration is used to define Rk. 

We shall consider the problem of approximating the solution U of 

LU=F in Q, 

(5.1) jU=O onOQ. 

Here Q is a domain in n-dimensional Euclidean space and L is given by 

Lv = - E 0- (aij aY ), 
i,j=1 

with {atj} uniformly positive definite and bounded on Q. The form A used in the 
multigrid algorithm is the bilinear form corresponding to the operator L and is 
defined by 

(5.2) A(v,w)= E ] ai T- YZ dx. 

This form is defined for all v and w in the Sobolev space H1(Q) (the space of 
distributions in L2(F) with square integrable first derivatives). Clearly, U is the 
solution of 

A(U, O) = (F, O) for all G E Ho' (), 
where Ho (Q) is the subspace of H1 (Q) of functions which vanish in the appropriate 
sense on aQ and (., ) denotes the L2-inner product on Q. 

We assume that ? has been triangulated with a sequence of quasi-uniform trian- 
gulations Q = Uj 4k of size hk for k = 0, . .. , j, where the quasi-uniformity constants 
are independent of k (cf. [3]). We further assume that there is a constant c, inde- 
pendent of k, such that hk-l < chk. These triangulations should be nested in the 
sense that any triangle rk-1 can be written as a union of triangles of {4k}. We de- 
fine Mk to be the set of piecewise linear functions (with respect to the triangulation 
Ui 4k) which vanish on aQ. 

To avoid the inversion of L2 Gram matrices, we define (., *)k as a discrete L2-inner 
product. Let {fy} be the collection of nodes corresponding to the triangulation for 
Mk. We set 

(5.3) (u, v)nk = k u(yk)v(yk) 

Note that the quasi-uniformity of the triangulations implies that the discrete form 
(, -)k is equivalent to the form (.,-) on the subspace MJkk. We seek the Galerkin 
approximation v E Mj (to the solution U of (5.1)) defined by 

(5.4) A(v, k) = (F, X) for all E Mj. 

Equation (5.4) can be rewritten as 

(5.5) A(v, X) = (F. q)j for all X E Mj, 

with an obvious choice of F E Mj. We derive (3.3) under the following elliptic 
regularity assumption. There exists a constant C such that 

(5.6) IIUIIH1+-(Q) < C IIFIuHQ1(n) 
holds for solutions U of (5.1). The norms H8 (0) are Sobolev norms of order s and 
are defined in, for example, [10], [15]. 

The following lemma is given in [3] and depends on the quasi-uniformity assump- 
tions on the mesh defining Mk. 
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LEMMA 5.1. Let 0 < 8 < 1. There are constants co and c1 which are indepen- 
dent of Mo C ... C Mj and satisfy 

colIA 12UIlk < II|UIIH(Q) < c1IIA /j2uIk for all u E Mk. 

Using the above lemma, we shall prove the following proposition. 

PROPOSITION 5. 1. Assume that (5.6) holds for some a in (0, 1]. Then (3.3) 
also holds for that a. 

Remark 5.1. It is well known that estimates of the form of (5.6) do not in general 
hold for all a, and the range of a's for which they hold depends upon the regularity 
of the coefficients defining L and the smoothness of 610. We have computational 
evidence (see Example 6.1) which suggests that in such instances (3.3) will not hold 
for all a with constants C2 independent of h. Thus, the discrete result (3.3) is tied 
strongly to the elliptic regularity result (5.6). 

Proof of Proposition 5.1. Let u E JMvk. Applying Schwarz's inequality and Lemma 
5.1 gives 

A((I - Pk- 1)u,u) < IIIAk'2u IIIjjAkj'2(I -Pk_)uIII 

k k~~~~~~~~ (5 7) < |||Ak~~~/2u|| 1-a )/2 (I-_p-)ul 

? IIIA~'k /uIII I1| -Pk-1)UIIH1-.(Q) 

By Holder's inequality, 

(5.8) IIIA'2uIII < (A(u,u)1- IIAku12)'1 

By standard error analysis techniques for finite element methods, employing duality 
and (5.6) (cf. [1], [6]), it follows that 

(5 9) I(-k )u| -cn < ch'-1 A((I -Pk-,)u, U) 1/2, 

By the quasi-uniformity assumption of the mesh, Ak < ch -2. Hence, the proposition 
results from combining (5.7)-(5.9). 

We next consider applying the theorems in the finite difference case. Here we 
consider a uniform rectangular grid with nodes (i, 1). We are to invert the five-point 
operator which is defined for grid points (i, 1) E Q by 

(5.10) (Aju)i,i = h72(4ui,l-ui.,j-uii-uiui - 

where we set ui,l = (A3u)i,l = 0 for (i, 1) i Q. We define a triangulation by 
breaking each rectangle into two triangles and set Mj to be the space of piecewise 
linear functions with respect to this triangulation which vanish on the nodes not in 
Q. It is well known that 

(Aju, u)j = (Aju, u)j, 
where Ai is the operator defined by (5.2) and (5.3) with L equal to minus the 
Laplacian (-A). Consequently, if we define a nested sequence of subspaces Mk 
as described above, then Proposition 5.1 applies and shows that the multigrid 
algorithms (defined using these spaces, (5.2), (5.3) and Aj) satisfy the convergence 
estimates of the theorems. These are clearly multigrid algorithms for A3. Note that 
for these algorithms, both the 'interpolation operators' and 'residual computation 
operators' which appear in the so-called 'finite difference' multigrid are defined by 
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the way nodal basis elements in Mk+1 are combined to get nodal basis elements in 
Mk. 

We finally consider an example where symmetric Gauss-Seidel iteration is used 
to define Rk. We consider the case where Aj = Aj is given by (5.10). Note that we 
do not require that the domain be a square. Then the matrix Mk corresponding to 
A. in the usual nodal basis with any ordering can be written 

Mk = h2 (I-Lk Uk)i 
k 

where Uk and Lk are strictly upper and lower triangular matrices and I is the 
identity matrix. We define Rk by 

Rk = L(I - Lk)' (I - Uk 1. 

The matrix corresponding to Kk is 

I - (I - Lk)1(I - Uk)1 (I - Lk -Uk) 

which is similar to 

(5.11) (I - Uk) 'UkLk(I - Lk)'. 

The matrix (5.11) is clearly nonnegative and hence Kk is also nonnegative. We 
need only verify (3.4). The largest eigenvalue of Aj is greater than or equal to 
4/h2, and hence (3.4) is equivalent to 

(5.12) I( -Uk)UIIk < CR IIUIIk. 

But the sum of the absolute value of entries in any column of Lk + Uk is less than 
or equal to one, from which it follows that 

(5.13) IIUkUIIk < IIU 1k 

Hence, (3.4) holds with CR = 4. 

6. Numerical Examples. Numerical experiments are presented in this section 
which illustrate some of the theoretical properties derived earlier in this paper. 
In some cases, actual values for C, are computed and the results of numerical 
experiments are compared with the theoretical bounds given by the theorems of 
Section 3 with these values of C,. These results suggest that, for finite element 
applications, the theorems provide reasonable convergence bounds. We also give an 
example which suggests that (3.3) does not in general hold for a = 1 with constant 
CQ, independent of h. 

All of the examples presented will be for the problem 

-U = F in Q. 

U=0 on Q, 

where Q is either the unit square, the unit square with the upper right-hand sub- 
square removed (i.e., the 'L-shaped' domain), or the slit domain whose boundary 
consists of the boundary of the unit square together with the set {(1/2, y) I y E 

[1/2, 1]}. We will consider a regular rectangular mesh where each rectangle is split 
into two triangles with piecewise linear elements and use the finite element multi- 
grid framework discussed in Section 5. As discussed in Section 5, the resulting 
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multigrid algorithm can be used to solve either the corresponding finite element or 
finite difference equations. 

Example 1. In this example, we compute the best constant Ci (hk) satisfying the 
inequality 

A((I Pk-l)u, u) < C1 (hk) ( AI) for all u E Mk, 

for both the square and slit domains. For the square, Proposition 5.1 gives that 
Ci (hk) can be bounded independently of hk. In fact, by using an odd extension 
and an analysis (cf. [2]) on the periodic domain, it can be shown that C02(hk) < 
4 + 2V/- = 6.828.... The computed values for C2 (hk) in Table 6.1 satisfy the above 
estimate. In contrast, for the slit domain, Proposition 5.1 can only be applied for 
0 < a < 1/2. Note that the results in Table 6.1 clearly suggest that it is not 
possible to satisfy (3.3) with a = 1 for the slit domain. In fact, C2 (hk) seems to 
be growing like ch-1. This example clearly indicates that the multigrid analysis 
for a < 1 is important since the assumption (3.3) cannot be expected to hold in 
general for a = 1. 

TABLE 6.1 
Values for C2(hk) for the Square and Slit Domains. 

hk Square Slit 

1/16 5.8 7.8 
1/32 6.3 12 
1/64 6.6 20 
1/128 6.6 36 

Example 2. In this example, we consider the symmetric V cycle of multigrid 
applied to the slit domain. We shall consider two algorithms. The first algorithm 
uses m(k) = 1, while the second uses variable smoothing defined by m(k) = 2j-k 

Both algorithms use Rk = Akj'Ik where Ak is the largest eigenvalue for the Ak 
with the square domain. We compute the best values of &j satisfying (3.1) for the 
corresponding algorithms and set ej = 1 - 6j. According to Proposition 5.1, (3.3) 
holds for al in the interval (0, 1/2) and from Theorem 1 we expect that ej (m = 1) 
should go to zero nearly like 

(6.1) 9i (m = 1) = (1 + Mc, (jo + j)). 

Unfortunately, we do not know the corresponding constant C1/2 defining M1/2 in 
Theorem 1. Instead, we have chosen M1/2 = .268 and jo = 1.93 in (6.1) to fit the 
computed results. The fact that this function fits the computed values of ej (m = 1) 
so closely indicates that the log(h) is really reflected in the computational behavior. 
However, the logarithmic growth is quite slow and the corresponding reductions 
(i.e., 6j = .722 at hj = 1/256) are rather remarkable. We also include the values 
of ej (variable m) corresponding to the variable smoothing algorithm. Note that, 
as predicted by Theorem 5, these values for ej remain bounded away from zero 
independently of h. 
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TABLE 6.2 
Values of ej for V Cycle Algorithms on the Slit Domain. 

hj - ej (m = 1) ej (m = 1) Ej (variable m) 

1/8 .45 .43 .414 
1/16 .386 .390 .428 
1/32 .347 .350 .424 
1/64 .318 .320 .422 

1/128 .296 .295 .420 
1/256 .278 .273 .420 

Example 3. In this example, we compare the values of ej for the L-shaped and 

square domains. We use the V cycle with m = 1 and Rk = AklIk. In the case 
of the L-shaped domain, Proposition 5.1 implies that (3.3) holds for 0 < a < 2/3. 
As can be seen from Table 6.3, the computed values of e, for the L-shaped domain 
are somewhat smaller than those for the square domain and somewhat larger than 
those for the slit domain. The ej's corresponding to the L-shaped domain also 
decrease faster than those for the square while not as fast as those for the slit. This 
is in qualitative agreement with the theorems. 

TABLE 6.3 
Computed Values of ej for the Square and L-shaped Domains. 

hi |ej (square) ej (L-shaped) 

1/8 .48 .46 
1/16 .43 .42 
1/32 .42 .40 
1/64 .41 .38 

1/128 .41 .37 
1/256 .41 .36 

Example 4. !We include this example to indicate that the behavior for large m 
suggested by the theorems is consistent with the results of actual computations. 
We shall use the symmetric V cycle on a grid of size hj = 1/64 with Rk = Ak-Ik 

and m(k) = m for all k. 
We first consider the case of a = 1, i.e., the square domain. We shall compare the 

computed best constant 6, (computed) satisfying (3.1) with the theoretical estimate 
given by Theorem 1 as a function of m. In this case, 

' <6.828... 

as noted earlier. In this application, Rk = Ak- Ik = Ak jIk and hence CR = 1. 
Theorem 1 guarantees that 

c2 
6, (computed) < 6j (theoretical) = 2m + C2' 

Table 6.4 gives the values of 6j (computed) and 6, (theoretical) as a function of m. 
We also fit the computed results (at m = 13) with a function of the form 

(6.2) 6j (fit-1) = 2m+C 
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TABLE 6.4 
Computed, Theoretical, and Fit Values of 6j on the Square. 

m 6j (computed) 6j (theoretical) 6j (fit-1) 

1 .59 .77 .55 
5 .20 .40 .19 
13 .085 .20 .085 
25 .045 .12 .046 
41 .027 .08 .029 

Note that the fitted function provides a very good approximation to the computed 
values of &j for large m. 

We next consider the slit domain. We again report the computed values of 6j and 
compare with fitted functions. Since, for this example, (3.3) holds for 0 < a < 1/2, 
we should expect to be able to fit 6j with 

(6.3) 6b (fit-1/2)= C 

Table 6.5 compares this fit (at m = 13) with the computed results for 6j. Note that 
the computed results are going to zero slightly faster than the fit. For comparison, 
we also have fit the computed results (6j (fit-1)) to a function of the form (6.2). 
The computed results go to zero more slowly than the fit to (6.2). Thus the actual 
computed results seem to show an asymptotic behavior which is somewhere between 
m-1 and m-1/2. This is consistent with the results of the theorems since the 
theorems provide only pessimistic convergence bounds. 

TABLE 6.5 
Computed and Fit Values of 6j on the Slit. 

m 6i (computed) 6j (fit-1/2) 6j (fit- 1) 

1 .682 .38 .69 
5 .287 .22 .30 
13 .146 .146 .146 
25 .089 .11 .08 
41 .060 .09 .05 
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